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1 Function Spaces and Ordinary Differential Equations

We are interested in studying first order nonlinear scalar PDEs, equations of the form
F (x, u, ∂u) = 0. Here is the battle plan: First, we will need to discuss function spaces
and an provide an introduction to ODEs. Then we will be able to study nonlinear, scalar
PDEs. We will study linear PDEs, then semilinear PDEs, and then work our way up to
studying nonlinear PDEs.

1.1 Function spaces

What functions could be solutions to a PDE? How do we verify that a function is a solution?
We need functions that are differetiable, but this is far from the only thing we will consider.

Suppose we have a function u : Rn → R.

Definition 1.1. The set of (bounded) continuous functions are denoted C(Rn). It
has the norm ‖u‖C(Rn) = supx∈Rn |u(x)|, C(Rn).

For now, we will assume these functions are bounded, but we may not do so later. If
Ω ⊆ Rn, we can similarly define C(Ω).

Definition 1.2. A normed space is a vector space equipped with a norm u 7→ ‖u‖ ≥ 0,
which satisfies

1. ‖u+ v‖ ≤ ‖u‖+ ‖v‖

2. ‖λu‖ = |λ|‖u‖ for λ ∈ R.

3. ‖u‖ = 0 =⇒ u = 0.

A Banach space is a normed space is a normed space which is complete, i.e. any Cauchy
sequence is convergent.

That is, if un ∈ X and limn,m→∞ ‖un − um‖ = 0, the sequence un must have a limit.
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Example 1.1. R and C are complete.

Example 1.2. Equipped with the norm ‖u‖C(Rn) = supx∈Rn |u(x)|, C(Rn) is a Banach
space.

Example 1.3. C1 = {u ∈ C : u differentiable everywhere, ∂u ∈ C} is the space of con-
tinuously differentiable functions. This space has the norm ‖u‖C1 = ‖u‖C + ‖∂u‖C .

More generally, we may consider Cm(Rn). The set
⋂∞
m=1C

m(Rn) =: C∞(Rn) is the set
of smooth functions. In general, the smooth functions is too small a class of functions
to be the only focus of study in PDEs.

Here are examples of functions.

Example 1.4. Observe that

u(x) =
1

1 + x2
∈ C(R),

while
v(x) = x2 /∈ C(R)

because it is not bounded.

Definition 1.3. Cloc(R) is the space of continuous but not necessarily bounded
functions.

Example 1.5. If IN = [−N,N ], we can try to use ‖u‖C(IN ) = supx∈IN |u(x)|. We would
be able to get countably many of these to measure convergence of functions. But this is
not a norm on all of R, since it assigns 0 to nonzero functions. This is a seminorm.

Definition 1.4. A seminorm is a norm without the property that ‖u‖ = 0 =⇒ u = 0.

What does convergence look like with respect to seminorms? What happens is that
un → u in Cloc if ‖un − u‖C(IN ) → 0 for each N . So we extend the concept of a normed
space to a locally convex space, where instead of a norm, we may have infinitely many
seminorms.

Why is this called locally convex? In Rn, we can specify convergence by a fundamental
system of neighborhoods, balls around each point. Another property of balls is that they
are convex. If we want to talk about convergence in a locally convex space, we can also
do it using by specifying convex balls. We could have many different types of balls around
any point defined by different seminorms.

From this point on, we will use C to refer to Cloc. So our functions may be unbounded.

Example 1.6. The seminorms for Cm(Rn) look like

pK,N (u) = sup
x∈K

sup
|α|≤N

|∂αu(x)|,

where K ⊆ Rn is compact.

Later, we will study more function spaces, such as Sobolev spaces.
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1.2 Ordinary differential equations and Lipschitz functions

A (nonlinear) ODE regards a function u : R→ R which solves an equation of the form{
u′ = F (x, u(x))

u(0) = u0.

If we let the codomain be Rn, we get a system of equations.
If this equation solvable? We are asking about existence of solutions, uniqueness of

solutions, dependence of solutions on initial data, and local vs global solutions. At the
minimum, we require that F is continuous and look for a C1 local solution.

Theorem 1.1 (Peano). If F is continuous, then a local C1 solution exists.

However, uniqueness can fail, as the following example shows.

Example 1.7. Consider the equation u′(x) =
√
u with u(0) = 0. One solution is u = 0.

Alternatively, u = x2/4 is another solution for x > 0. We can extend this second solution
to a global solution by making it 0 for x ≤ 0. Moreover, we can translate this solution to
the left or right to get another solution. So there are infinitely many solutions.

Example 1.8. Consider the equation u′ = |u|α. If we check u = xβ, we get that β = 1
1−α .

We can consider this with a range of α, up to any α < 1. What happens when α = 1? The
function |u|α becomes Lipschitz.

Definition 1.5. A function F is Lipschitz continuous with Lipschitz constant L if

|F (x)− F (y)| ≤ L|x− y| ∀x, y.

The Lipschitz functions form a Banach space when equipped with the norm ‖F‖C +

‖F‖Lip, where ‖F‖Lip := supx,y
|F (x)−F (y)|
|x−y| which gives the “best” Lipschitz constant L.

Lipschitz functions have bounded slope, so it is reasonable to compare the spaces Lip
and C1. What is the relationship? We have C1 ⊆ Lip. In 1 dimension, we can see this by
the mean value theorem: F (x)−F (y) = F ′(c)(x− y) for some x ∈ (x, y). For more than 1
dimension, we can still restrict the function to its values on a line connecting x, y to reduce
to the 1 dimensional case.

However, Lip 6⊆ C1.

Example 1.9. The function F (x) = |x| is 1-Lipschitz but not C1.

Remark 1.1. It actually turns out that a Lipschitz function is differentiable outside a set
of measure zero, but we will not use this.

This inclusion of Banach spaces is actually very nice because by the mean value theorem,
we can use the same norm for both Lip and C1.
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1.3 Hölder continuous functions and fixed point methods

Starting from the continuous functions C0, we have the subspaces C0 ⊇ Lip ⊇ C1. Is there
anything in between C0 and Lip?

Definition 1.6. The α-Hölder continuous functions are Cα(R) = {F : |F (x)−F (y)| ≤
M |x− y|α} for 0 < α < 1, equipped with the norm ‖F‖Cα := sup |F (x)−F (y)|

|x−y|α .

Remark 1.2. If α > 1, the only functions that work are the constant functions.

Returning to our previous example, the function |x|α is α-Hölder continuous.

Theorem 1.2. If G is locally Lipschitz, then a local solution exists and is unique.

Here is the beginning of the proof:

Proof. Restate the problem using the fundamental theorem of calculus. Integrating the
equation gives

u(x) = u(0) +

∫ x

0
F (y, u(y)) dy.

This allows us to think of the problem as a fixed point problem. Define the map C1 3
u 7→ N(u)(x) := u(0) +

∫ x
0 F (y, u(y)) dy. Observe that u solves our ODE if and only if

N(u) = u. That is, we want u to be a fixed point of N .

In 1-dimension, if we have f : R→ R, when do we have fixed points f(x) = x? We can
look for the points where the graph of f intersects the line y = x. One thing we can do to
get fixed points is ask that the function does not increase very fast: |f ′| < 1. In this case,
f will have a unique fixed point.

We have just stated the following theorem:

Theorem 1.3. If f : R→ R with |f ′| < 1, then f has a unique fixed point.

This fact extends to Banach spaces.

Theorem 1.4. Let B be a Banach space. If f : B → B is Lipschitz with Lipschitz constant
L < 1 (‖f(x)− f(y)‖ ≤ L‖x− y‖), then f has unique fixed point.

This is not sufficient for us because we are not looking at the entire space of C1 functions.
We only want local solutions.

Theorem 1.5 (Banach contraction principle). If f : D ⊆ B → D with D closed is Lipschitz
with constant < 1, then f has a unique fixed point.

Example 1.10. We need the domain D to be closed. If D = (0, 1) and f(x) = x/2, then
f has no fixed points. But adding the endpoints of the interval rectifies this.

Next time, we will further discuss this fixed point theorem.
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